Category: Learning to Navigate

Do artificial intelligence (AI) agents learn to build internal spatial representations (or ‘mental’ maps) of their environment as a natural consequence of learning to navigate?

Erik Wijmans, Manolis Savva, Irfan Essa, Stefan Lee, Ari S. Morcos, Dhruv Batra. Emergence of Maps in the Memories of Blind Navigation Agents. arXiv:2301.13261 [cs.AI], 2023. 

Abstact
“Animal navigation research posits that organisms build and maintain internal spatial representations, …

Be the First to comment. Read More

When and why grid cells appear or not in trained path integrators?

Ben Sorscher, Gabriel C Mel, Aran Nayebi, Lisa Giocomo, Daniel Yamins, Surya Ganguli. When and why grid cells appear or not in trained path integrators. bioRxiv 2022.11.14.516537; doi: https://doi.org/10.1101/2022.11.14.516537

Abstract
“Recent work has claimed that the emergence of grid …

Be the First to comment. Read More

Learning from animals: How to Navigate Complex Terrains?

Zhu H, Liu H, Ataei A, Munk Y, Daniel T, Paschalidis IC (2020) Learning from animals: How to Navigate Complex Terrains. PLoS Comput Biol 16(1): e1007452. https://doi.org/10.1371/journal.pcbi.1007452

Abstract
We develop a method to learn a bio-inspired motion control

Be the First to comment. Read More

How the grid cells perform path integral, path planning and error correction?

Gao, Ruiqi & Xie, Jianwen & Zhu, Song & Wu, Yingnian.  Learning Grid Cells as Vector Representation of Self-Position Coupled with Matrix Representation of Self-Motion. ICLR 2019

Abstract

This paper proposes a representational model for grid cells. In

Be the First to comment. Read More

Learning to navigate – how desert ants calibrate their compass systems?

Robin Grob, Pauline N. Fleischmann and Wolfgang Rössler*. Learning to navigate – how desert ants calibrate their compass systems. Neuroforum 2019. https://doi.org/10.1515/nf-2018-0011 

Navigating through the environment is a challenging task that animals cope with on a daily basis. Many …

Be the First to comment. Read More

Neuro-Autonomy: Neuroscience-Inspired Perception, Navigation, and Spatial Awareness for Autonomous Robots

MURI Project Title: “Neuro-Autonomy: Neuroscience-Inspired Perception, Navigation, and Spatial Awareness for Autonomous Robots”

Project Website: http://sites.bu.edu/neuroautonomy/

https://electrical.eng.unimelb.edu.au/control-signal-processing/neuro-autonomy 

 

The following content is extracted from the http://www.bu.edu

A Boston University-led research team was selected to receive a $7.5 million Multidisciplinary …

Be the First to comment. Read More

NeuroSLAM : Neural Simultaneous Localization and Mapping Workshop 13-14 Mar 2019 Paris (France)

NeuroSLAM: Neural Simultaneous Localization and Mapping Workshop

 

Simultaneous Localization and Mapping (or SLAM) refers to the problem of constructing a map of an unknown environment as it is actively being explored. SLAM has been treated extensively in mobile robotics, providing …

Be the First to comment. Read More