Category: Indoor Spatial Representation

A Survey of Digital Map Processing Techniques

YAO-YI CHIANG, University of Southern California

STEFAN LEYK, University of Colorado, Boulder

CRAIG A. KNOBLOCK, University of Southern California

 

Abstract—Maps depict natural and human-induced changes on earth at a fine resolution for large areas and over long periods

Be the First to comment. Read More

LocusLabs室内位置感知与地图服务平台

LocusLabs室内位置感知与地图服务平台

 

LocusLabs provides the platform and tools that enable apps to be location-aware on a micro level. LocusLabs is going a level deeper than existing mapping solutions. We are mapping not only places, but people, products and things using

Be the First to comment. Read More

RoughMaps:室内符号地图服务平台

RoughMaps:室内符号地图服务平台

RoughMaps:A Generic Platform to support Symbolic Map Use in Indoor Environments

 

      许多应用都需要能够支持个性化和上下文感知信息。其中用户定位和地图主要作用就是为了满足这个目的。RoughMaps平台包含了符号地图的功能。这种地图不需要考虑比例尺,是一种非线性、以自然的形式高度抽象的地图,仅仅包含了给定用户当前情境所需求的相关地图要素。文中介绍了RoughMaps平台的设计、实现和测试工作。该平台可用于根据上下文进行管理和查询面向室内定位的符号地图。据了解,该平台是个性化上下文感知应用中第一个支持室内定位的符号地图平台。

     An important feature for many applications is the ability to support personalised and context-aware information delivery. User positioning and the use

Be the First to comment. Read More

基于Occupancy Grids的二维语义制图

基于Occupancy Grids的二维语义制图

2D Semantic Mapping on Occupancy Grids

 

      近年来,学者们对室内矢量地图技术开展了大量研究工作,已经在许多方面得到了很好的应用。SLAM方法能够生成全局一致的矢量地图。尽管这样的地图描述了环境基本的信息并能够支持导航,但仍然缺乏环境的更高层抽象的语义信息或者人们认知的语义信息,例如建筑结构的类别、连通性等。本文中提出了一种新的概率方法基于全覆盖的网格图分析潜在的语义世界模型。该模型是由标准的SLAM方法所产生。文中的方法仿真了一种马尔可夫链从给定输入地图的语义世界模型概率分布产生样本。实验表明该方法是有效的,能够正确捕获到不确定性。

 

      典型的语义概念,比如房间、走廊、空间关系(邻接、连通)、其他属性(如矩形)。这些语义信息有助于构建地图。虽然语义机器人制图没有像矢量或拓扑制图一样得到广泛研究,但也有一些重要的贡献。 文献【11】中的方法作为许多种语义制图方法的先驱,结合了网格和拓扑制图方法能够同时获得高精度、一致性的矢量图和有效拓扑图。 Wolf and Sukhatme [14] 提出了使用隐马尔可夫模型和支持向量机来解决地形制图和基于活动制图中所存在的问题。文献 [10], [2] 和 [3]利用语义标签来标注位置和区域。 Douillard等人提出使用条件随机场(conditional random fields)构建室外环境对象地图。此外,一些学者还提出了利用语义标注环境结构的方法,比如室外环境的道路(traversable terrain)、室内环境中的墙、天花板和门。比较典型的例子如[8], [12], [6] 和[9]。

 

       In recent years, techniques for building metric maps of indoor environments

Be the First to comment. Read More

利用移动传感器众包室内地图

利用移动传感器众包室内地图

Crowd Sourcing Indoor Maps with Mobile Sensors

 

      本文介绍了一种众包室内地图的算法。通过志愿者所穿戴的智能手机中的三轴加速度计、磁力计和Nike跑鞋中的压力计,在室内行走过程中,应用程序将这些众包数据发送到制图服务器。该算法再通过DR方法从这些众包数据中获取用户的步行轨迹,估计出室内地图。

 

      一个成功的众包室内地图项目中至少包含三个问题:相对制图、全局制图和激励机制(Incentive)问题。其中相对制图最关键的问题是确定地图正确的比例和方位,本文主要解决的这个问题。而全局制图最关键的问题是把相对地图转换到某个通用的全局坐标系下,如UTM System。作者下一步将利用建筑物的出入口位置(轨迹的起点和终点)的GPS坐标和Wi-Fi热点测量值解决这个问题。此外,关于激励机制(Incentive)的问题,就是怎样激励人们搜集行走的测量数据并发送到制图服务器,其中Waze.com就是一个极好的案例。

 

      这篇文章的主要贡献就是为解决相对制图为题提供了一种解决方案。文中提出了一种估计走廊长度和方位的方法。在计算一层楼的地图时需要正确估计三条走廊的长度和方位。长度参数的估计标准差是3%,方位参数的估计标准差是0.074弧度(约4度)。

 

      在将来的工作中,需要对所提出的方法在多个楼层进行测试。此外,目前的研究主要限制在识别建筑物的走廊,还相对比较容易并且不需要大量的采样。当然,建筑物中还有开放空间和楼梯,这些通常比较难以识别,真正的众包地图还需要表达更多室内语义信息。

 

      The paper describes algorithms required to enable the crowd sourcing of indoor building

Be the First to comment. Read More

利用房间指纹基于走廊自动构建室内地图

 

利用房间指纹基于走廊自动构建室内地图

Hallway based automatic indoor floorplan construction using room fingerprints

 

       人们70%以上的时间都处在室内空间。了解室内环境信息对广泛新兴的移动社交应用至关重要。在这些应用中往往需要室内楼层平面图。然而,很多环境中的室内地图不可用或者通过人工制作地图往往耗时、耗力且存在很多误差。本文中作者设计了一种自动构建室内地图的系统。该系统通过利用Wi-Fi指纹和用户的运动特征信息,通过三个关键步骤自动构建室内地图。

       第一步、构建房间邻接图,以确定房间之间的邻接关系;

       第二步、学习走廊布局,以估计沿着每个走廊的房间大小和房间顺序;

       第三步、进行伸缩处理,以调整房间大小并优化整个楼层平面图的精度。

       该系统可以用在新兴的移动应用中用于生成、使用、共享室内地图。

 

   People spend approximately 70% of their

Be the First to comment. Read More

Map++:一种自动地图语义识别的众包感知系统

Map++:一种自动地图语义识别的众包感知系统

Map++: A Crowd-sensing System for Automatic Map Semantics Identification

 

        商业的或免费的数字地图服务已经成为我们日常生活中很重要的一部分。这些服务还存在更大的改进空间,比如通过丰富的语义信息来增强它的功能。本文中作者提出了一种Map++系统,能够利用标准的手机传感器以众包感知的方式用不同的道路语义信息丰富数字地图,比如隧道、颠簸路段、桥、人行桥、人行横道和道路容量等。通过分析可知,人们在乘车或行走过程中所携带的手机传感器特征受不同道路特征的影响,因此,可以从中挖掘扩展免费和商业制图服务中的要素。作者设计实现了一套Map++并在大城市中进行了评估。评估结果表明,Map++在行人乘车或行走过程中的检测不同语义精度分别为:错报率(False Positive Rate) 3%、漏报率(False Negative Rate)6%。

 

     Abstract Digital maps have become a part of our daily life with a number of commercial

Be the First to comment. Read More